Far cortical locking screws in distal femur fractures.

نویسندگان

  • John D Adams
  • Stephanie L Tanner
  • Kyle J Jeray
چکیده

Distal femur fractures routinely heal by secondary bone healing, which relies on interfragmentary motion. Periarticular locking plates are commonly used for fixation in distal femur fractures but are associated with a high nonunion rate, likely due to the stiffness of the constructs. Far cortical locking (FCL) screws are designed to allow micromotion at the near cortex while maintaining purchase in only the far cortex. Although clinical data are limited, these screws have been shown in biomechanical studies to provide excellent interfragmentary motion, and animal models have shown increased callus formation compared with traditional locking screws. The purpose of this study was to examine the clinical effects that FCL screws have on healing in distal femur fractures treated with locked constructs. In this retrospective case series, 15 patients with a distal femur fracture treated with MotionLoc screws (Zimmer, Warsaw, Indiana) were analyzed. Serial radiographs were evaluated for callus presence and time to union. All fractures were either 33-A3 or 33-C2 according to the AO classification system, and 5 (33%) were open. Bone loss was recorded in 2 patients. There were no nonunions, and average time to union was 24 weeks. There were no implant failures, and all 5 open fractures, including the 2 with bone loss, healed without intervention. There was 1 reoperation due to painful hardware. Although this is a small case series, these results are promising. Far cortical locking screws may provide the answer to the high nonunion rate associated with distal femur fractures treated with traditional locked constructs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Far Cortical Locking Technology in Periprosthetic Femoral Fracture Fixation: A Biomechanical Study.

BACKGROUND Lack of fracture movement could be a potential cause of periprosthetic femoral fracture (PFF) fixation failures. This study aimed to test whether the use of distal far cortical locking screws reduces the overall stiffness of PFF fixations and allows an increase in fracture movement compared to standard locking screws while retaining the overall strength of the PFF fixations. METHOD...

متن کامل

A Pitfall in Fixation of Distal Humeral Fractures with Pre-Contoured Locking Compression Plate

Anatomically precontoured locking plates are intended to facilitate the fixation of articular fractures and particularly those associated with osteoporosis. Fractures of the distal humerus are relatively uncommon injuries where operative intervention can be exceptionally challenging. The distal humeral trochlea provides a very narrow anatomical window through which to pass a fixed-angle locking...

متن کامل

Comparison of 4 Methods for Dynamization of Locking Plates: Differences in the Amount and Type of Fracture Motion

BACKGROUND Decreasing the stiffness of locked plating constructs can promote natural fracture healing by controlled dynamization of the fracture. This biomechanical study compared the effect of 4 different stiffness reduction methods on interfragmentary motion by measuring axial motion and shear motion at the fracture site. METHODS Distal femur locking plates were applied to bridge a metadiap...

متن کامل

Far Cortical Locking Enables Flexible Fixation While Maintaining Construct Strength

INTRODUCTION: The stiffness of a fixation construct affects the mechanism and progression by which a fracture heals. Locked plating constructs have improved fixation strength in weak bone, but their relatively high stiffness may suppress interfragmentary motion (IFM) to a level insufficient for optimal promotion of secondary bone healing.[1] This is especially of concern when locked plates are ...

متن کامل

Biomechanical comparison of axial load between cannulated locking screws and noncannulated cortical locking screws.

The goal of this study was to compare the biomechanical stability of cannulated locking screws and noncannulated cortical locking screws in a periarticular locking plate. Twelve fresh-frozen porcine tibias with a 1-cm gap created distal to the tibial plateau were used to simulate an unstable proximal tibial fracture. All specimens were fixed with a periarticular proximal lateral tibial locking ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Orthopedics

دوره 38 3  شماره 

صفحات  -

تاریخ انتشار 2015